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ABSTRACT

In this work, sensitivity, optimal control, and cost-effectiveness of several intervention
strategies of filariasis are discussed. We study the intervention strategies that are related to bed-
net use, insecticide, and the combination of bed-net use and insecticide. We use Pontryagin’s
maximum principle to characterize the optimal controls. The Average Cost-Effectiveness
Ratio (ACER) and Infection Averted Ratio (IAR) are used to identify the most cost-effective
strategy. We also determine the basic reproduction number and investigate the sensitivity of
the basic reproduction number on the parameters that are related to bed-net use and insecticide.
Based on the ACER values, the most cost-effective strategy to control filariasis is insecticide
intervention. On the other hand, the IAR values indicates that bed-net use intervention is the
most cost-effective strategy. Furthermore, it is also the most effective strategy to eliminate
filariasis. The sensitivity analysis results show that the control parameter related to bed net
use and treatment have a central role in reducing the basic reproduction number and filariasis
spread.
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1. Introduction

Mosquito-borne diseases such as malaria, dengue fever, chikungunya, and zika cause
more than one million deaths every year. Unlike some of the mosquito -borne diseases
previously mentioned, filariasis is a mosquito-borne disease which can cause permanent
disability [1]. Filariasis is a chronic infectious disease caused by filarial worms and
transmitted to humans by infected mosquitoes [2]. More than 120 million people are
affected by filarial worm infection in 83 tropical and subtropical countries in several
regions, i.e., Southeast Asia, Africa, the Mediterranean, the Western Pacific, and the
Americas are endemic areas [3]. In Indonesia, filariasis is an endemic disease in several
provinces, e.g., West Sulawesi [4].
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The implementation of the filariasis elimination program is carried out by several
methods, namely providing mass drug therapy, preventing and limiting disability,
controlling vectors, and developing research related to filariasis. Another intervention
usually applied in managing the spread of filariasis is to reduce contact between
humans and mosquitoes [3].

In recent years, the spread of filariasis has been studied using mathematical models
[5–9]. Supriatna et al. [5] developed a mathematical model related to the spread of
filariasis to evaluate the long-term impact of treatment of patients with filariasis in West
Java, Indonesia. The outcomes of this research are the provision of additional care,
controlling the number of contact between humans and mosquitoes, and controlling the
mosquito population can reduce the cases of filariasis. Bhunu et al. [6] developed a
mathematical model of filariasis that considers humans that are still in the incubation
period. They found that treatment for elephantiasis patients can reduce the number of
filariasis cases. However, filariasis cannot be eliminated if the treatment is only given to
humans who have shown clinical symptoms, such as leg swelling (elephantiasis). They
suggest that humans who are still in the incubation period should be treated so that the
disease can be eradicated. The filariasis model developed to assess the impact of
quarantine is discussed in [7]. The result of this study is that treatment for humans who
are suffering from filariasis is more effective in reducing filariasis cases when compared
to quarantine interventions.

To study the impact of reducing the possibility of the contact between human and
mosquito which can disturb transmission process from mosquitoes to humans and from
humans to mosquitoes, we considered bed-net use intervention. The treatment that can
reduce the filarial parasite in the blood of treated humans was also considered in our
model because we wanted to study the impact of reducing the rate of infection from
humans to mosquitoes. Furthermore, to investigate the impact of controlling mosquito
populations, we also pay attention to the use of insecticides. Hence, in contrast to the
previously mentioned studies, we develop a filariasis model with the use of bed-net,
treatment, and the use of insecticides. We perform sensitivity analysis to investigate
normalized forward sensitivity index [10] of several parameters. Pontryagin’s
maximum principle is used to solve the optimal control problem. The cost-effectiveness
of several intervention strategies of filariasis are also studied by using similar methods
used in [11–14].

2. Methods

The study is conducted by doing the following steps:

1. Formulating a mathematical model of filariasis that considers the use of bed-nets
and insecticides.

2. Identifying the equilibrium points of the model and the conditions for its existence.
3. Determining the basic reproduction number using the next-generation matrix.
4. Performing sensitivity analysis.
5. Determining the solution of the optimal control problem using Pontryagin’s

maximum principle.
6. Conducting cost-effectiveness analysis by calculating and comparing average cost-

effectiveness ratio (ACER) and infection averted ratio (IAR) for each intervention
scheme. According to [15], we can calculate ACER and IAR by using the following
formulas, respectively.
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ACER =
Cost produced by the intervention

Number of Infection Averted
(1)

IAR =
Number of infection averted

Number of recovered
(2)

3. Results and Discussion
3.1. Model Formulation

In this section, we describe the process of model formulation. Figure 1 shows the flow
diagram of compartmens. Human population is divided into four compartments, i.e.,
susceptible human(Sh), latent human (Eh), infectious human (Ih), and treated human
(Th). On the other hand, we divide the mosquito population into two disjoint
compartments, i.e., susceptible mosquito (Sm) and infectious mosquito (Im).

Figure 1. Flow Diagram of Compartments

The total number of susceptible humans increases with constant recruitment which is
denoted by Λh. Here, we assume that treated humans who recover from filariasis do
not get immunity. Hence, as a result of treated humans who recover from filariasis at
rate θ, the total number of susceptible humans increases by θTh. The total number of
susceptible humans decreases by α (1−ω) Sh Im as a consequence of new infection that
occurs after adequate contact between susceptible humans and infectious mosquitoes.
Here, α is the transmission rate from infectious mosquitoes to susceptible humans and ω
is the proportion of humans who use bed-net at night. Because of the natural death of
susceptible humans, the total number of susceptible humans decreases by µhSh. Here, µh
is the natural death rate of human. Therefore, we get the following ordinary differential
equation that describe the dynamics of susceptible humans.

dSh

dt
= Λh − α (1−ω) Sh Im + θTh − µhSh.

Latent humans are humans who are infected but have not been able to transmit the
disease to mosquitoes. The total number of latent humans increases by new infection,
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that is α (1−ω) Sh Im. After the latent period β−1 ends, the latent human becomes an
infectious human. Hence, the total number of latent humans decreases by βEh.
Moreover, due to the natural death of latent humans, the total number of latent humans
also decreases by µhEh. Thus, we have

dEh

dt
= α (1−ω) Sh Im − βEh − µhEh.

The total number of infectious humans increases by new infectious humans, that is βEh.
Because of the natural death of humans, the total number of infectious humans
decreases by µh Ih. Here, we assume that the average waiting time of infectious humans
to get treatment is γ−1. Hence, the total number of infectious humans decreases by γIh.
Consequently, we get

dIh

dt
= βEh − γIh − µh Ih.

The total number of treated humans increases by γIh and decreases by the natural death
of treated human µhTh. The following ordinary differential equation represents the
dynamics of treated humans.

dTh

dt
= γIh − θTh − µhTh.

The total number of susceptible mosquitoes increases by constant recruitment, that is
Λm. After sufficient contact with infectious humans and treated humans, susceptible
mosquitoes get infected. Hence, the total number of susceptible mosquitoes decreases
by σ (1−ω) (Ih + (1− φ) Th) Sm. φ is the parameter that measures the effectiveness of
treatment in reducing the transmission from treated humans to mosquitoes. If φ = 1,
then treated humans can not transmit the disease. If φ = 0, then the treated humans can
transmit the disease similar to infectious humans who do not get treatment. If φ ∈ (0, 1),
then the treatment successfully reduces the transmission from treated humans to
susceptible mosquitoes. Here, we assume that the natural death rate of mosquitoes is
µmand the insecticide-related death rate of mosquitoes is τ. So, the total number of
susceptible mosquitoes decreases by µmSm + τSm. As a result, we have

dSm

dt
= Λm − σ (1−ω) (Ih + (1− φ) Th) Sm − µmSm − τSm.

The total number of infectious mosquitoes increases by new infection, that is
σ (1−ω) (Ih + (1− φ) Th) Sm. Similar to susceptible mosquitoes, the total number of
infectious mosquitoes decreases by µm Im + τ Im. Accordingly, we get

dIm

dt
= σ (1−ω) (Ih + (1− φ) Th) Sm − µm Im − τ Im.

Based on the model formulation process above, we have the following system.

dSh

dt
= Λh − α (1−ω) Sh Im + θTh − µhSh,

dEh

dt
= α (1−ω) Sh Im − βEh − µhEh,

dIh

dt
= βEh − γIh − µh Ih, (3)
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dTh

dt
= γIh − θTh − µhTh,

dSm

dt
= Λm − σ (1−ω) (Ih + (1− φ) Th) Sm − µmSm − τSm,

dIm

dt
= σ (1−ω) (Ih + (1− φ) Th) Sm − µm Im − τ Im.

3.2. Reproduction Number

The reproduction number is determined by using NGM (Next Generation Matrix)
method that is presented in [16]. Firstly, we determine the disease free equilibrium
point. After simple calculation process, we obtain the disease-free equilibrium point
P0 =

(
S0

h, E0
h, I0

h , T0
h , S0

m, T0
m
)
=
(

Λh
µh

, 0, 0, 0, Λm
µm+τ

)
. Following the method given in [16], we

determine F and V. Here, Eh, Ih, Th, Im are considered to be infected compartments.
Therefore, we get

F =


0 0 0 α (1−ω) Λh

µh

0 0 0 0
0 0 0 0
0 σ (1−ω) Λm

µm+τ σ (1−ω) (1− φ) Λm
µm+τ 0

 ,

V =


β + µh 0 0 0
−β γ + µh 0 0
0 −γ θ + µh 0
0 0 0 µm + τ

 .

It is straightforward to prove that the spectral radius of FV−1 is

ρ
(

FV−1
)
=

√
α (1−ω)Λh

(µm + τ) µh
v1,

where

v1 =
σ (1−ω) βΛm

(β + µh) (γ + µh) (µm + τ)
+

σ (1−ω) (1− φ) βγΛm

(β + µh) (γ + µh) (θ + µh) (µm + τ)
.

Therefore, the reproduction number is given as follows

R0 =

√√√√α (1−ω)2 ΛhσβΛm (θ + µh + (1− φ) γ)

(µm + τ)2 (β + µh) (γ + µh) (θ + µh) µh
.

Based on Theorem 2 in [16], we obtain the following Theorem.

Theorem 1. The disease free equilibrium point P0 is stable if R0 < 1. On the other hand, P0 is
unstable if R0 > 1.

3.3. Sensitivity Analysis

In this section, we perform sensitivity analysis to identify the effect of several
parameters, e.g., Λm, τ, ω, φ, on the basic reproduction number. We determine the
normalized forward sensitivity index that is described in [10]. The sensitivity index of
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each parameter is given as

ΥR0
Λm

=
∂R0

∂Λm
× Λm

R0
=

1
2
> 0,

ΥR0
τ =

∂R0

∂τ
× τ

R0
=
−τ

τ + µv
< 0,

ΥR0
φ =

∂R0

∂φ
× φ

R0
=

−φγ

θ + µh + γ (1− φ)
< 0,

ΥR0
ω =

∂R0

∂ω
× ω

R0
=
−ω

1−ω
< 0.

ΥR0
Λm

= 0.5 shows that 1% increase in Λm causes 0.5% increase in R0. Hence, we can
reduce the basic reproduction number by reducing the recruitment rate of mosquitoes.
ΥR0

τ = −τ
τ+µv

means that 1% increase in τ will produce τ
τ+µv

decrease in R0. Therefore,
the basic reproduction number decreases as τ increases. However, the magnitude of the
decrease in R0 depends on the baseline value of τ and µv. To determine the sensitivity
index of the parameters, we use the parameter values presented in Table 1 as the baseline
of parameter values.

Table 1. Parameter Values

Parameter Values Unit Source
Λh

500×1.98
365×100 human × day−1 Estimated

Λm 6 mosquitoes × day−1 [7]
µh

1
65×365 day−1 [17]

µm
1

13 day−1 [18], [19]
α 0.01× 0.01 mosquito−1 × day−1 [7]
σ 1.52× 0.01 human−1×day−1 [8]
β 1

6×4×7 day−1 [20]
γ 1

7 day−1 [4]
θ 1

6×7 day−1 [3]
τ 0.001 day−1 Assumed
ω 20% Assumed
φ 20% [21], [22]

Figure 2. Sensitivity of R0(a) and relationship between τ, ω, and R0(b)

After substituting the parameter values, we obtain ΥR0
Λm

= 0.500, ΥR0
τ = 0.013,

ΥR0
φ = −0.036, and ΥR0

ω = 0.250. These results show that we must control the growth of
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mosquito population. Moreover, the use of bed-net and treatment which can reduce the
filarial worm in the blood of treated humans have a central role in filariasis control.
relationship between τ, ω, and R0 can be seen in Figure 2.

3.4. Optimal Control Problem

For the optimal control model, we set ω = u1 and τ = u2. Therefore, the optimal control
model is given as follows

dSh

dt
= Λh − α (1− u1) Sh Im + θTh − µhSh,

dEh

dt
= α (1− u1) Sh Im − βEh − µhEh,

dIh

dt
= βEh − γIh − µh Ih,

dTh

dt
= γIh − θTh − µhTh, (4)

dSm

dt
= Λm − σ (1− u1) (Ih + (1− φ) Th) Sm − µmSm − u2Sm,

dIm

dt
= σ (1− u1) (Ih + (1− φ) Th) Sm − µm Im − u2 Im.

Our purposes are to determine the control strategy that minimizes the number of
infectious humans and latent humans as well as the costs of interventions. Hence, we
intend to examine the control strategy that minimizes the following objective function

O (u1, u2) =
∫ T

0

(
D1Eh + D2 Ih + D3u1

2 + D4u2
2) dt, (5)

subject to system (4). D1 and D2 are the relative cost weight for Eh and Ih, respectively.
D3and D4 are the relative cost weight associated with bed-net use and insecticide,
respectively. The final time is T. We will determine u+

1 , u+
2 , such that

O
(
u+

1 , u+
2
)
= min

U
(u1, u2) ,

where

U = {u1 : [0, T]→ [0, umax
1 ] , u2 : [0, T]→ [0, umax

2 ] , are Lebesgue measurable} .

We solve the optimal control problem by applying Pontryagin’s maximum principle.
Based on the objective function (5) and the optimal control model (4), we establish the
Hamiltonian function H as follows

H = D1Eh + D2 Ih + D3u1
2 + D4u2

2

+w1 [Λh − α (1− u1) Sh Im + θTh − µhSh]
+w2 [α (1− u1) Sh Im − βEh − µhEh]
+w3 [βEh − γIh − µh Ih]
+w4 [γIh − θTh − µhTh]
+w5 [Λm − σ (1− u1) (Ih + (1− φ) Th) Sm − µmSm − u2Sm]
+w6 [σ (1− u1) (Ih + (1− φ) Th) Sm − µm Im − u2 Im] .

(6)
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where w1, w2, ..., w6 are adjoint variables. Next, we determine the adjoint system. The
adjoint system for the optimal control problem is given as follows

dw1

dt
= − ∂H

∂Sh
= (w1 − w2) αIm (1− u1) + w1µh,

dw2

dt
= − ∂H

∂Eh
= (w2 − w3) β + w2µh − D1,

dw3

dt
= − ∂H

∂Ih
= (w3 − w4) γ + w3µh + (w5−6) σ (1− u1) Sm − D2,

dw4
dt

= − ∂H
∂Th

= (w4 − w1) θ + w4µh,

dw5

dt
= − ∂H

∂Sm
= w5 (u2 + µm) + (w5 − w6) σ (1− u1) (Ih + (1− φ) Th) ,

dw6

dt
= − ∂H

∂Im
= (w1 − w2) α (1− u1) Sh + w6 (u2 + µm) ,

with boundary conditions wi(T) = 0 for i = 1, ...6. The derivative of Hwith respect to
control parameters u1 and u2 are, respectively, given as follows

∂H
u1

= 2D3u1 + (w1 − w2) αImSh + (w5 − w6) σSm (Ih + (1− φ) Th) ,

∂H
u2

= 2D4u2 − w5Sm − w6 Im.

After solving ∂H
∂u1

= ∂H
∂u2

= 0, we get

u∗1 =
(w2 − w1) αImSh + (w6 − w5) σSm (Ih + (1− φ) Th)

2D3
,

u∗2 =
w5Sm + w6 Im

2D4
.

(7)

Based on the upper and lower bound of u1 and u2, the optimal value u+
1 and u+

2 are,
respectively, given by

u+
1 = min {max {0, u∗1} , 1} ,

u+
2 = min {max {0, u∗2} , 1} .

3.5. Effectiveness and Cost Effectiveness

For the effectiveness and cost-effectiveness analysis, we adopt the following measures.

1. We regard infectious humans and latent humans as infected humans. Consequently,
the total number of infected humans in the course of Tperiod with and without
control are, respectively, given by

Twc =
∫ T

0
(E∗h (t) + I∗h (t)) dt, Twoc =

∫ T

0
(Eh (t) + Ih (t)) dt. (8)

where E∗h and I∗h represent the number of latent humans and infectious humans when
the control strategy is applied. Consequently, Tav = Twoc − Twc is the total number of
infected humans avoided because of the implementation of control strategy.
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2. Following [13], we use Ē to measure the effectiveness of intervention.

Ē =
Tav

Twoc
(9)

3. Following [11], the Average Cost-Effectiveness Ratio (ACER) and the Infected
Averted Ratio (IAR) are given by

ACER =
TC
Tav

,

IAR =
Tav

Tr
,

(10)

where TC =
∫ T

0

(
D3u1

2 + D4u2
2) dt and Tr =

∫ T
0 θThdtare total cost of intervention

and total number of recovered humans during T period, respectively.

3.6. Numerical Simulations

The parameter values used are presented in Table 1 which gives R0 = 7.5196. The initial
condition used is Sh (0) = 100, Eh (0) = 10, Ih (0) = 5, Sm (0) = 200, Th (0) = 30, and
Im (0) = 30. For the numerical study, we set D1 = 1, D2 = 4, D3 = 1, and D4 = 3. Here
we assume that umax

1 = 0.8 and umax
2 = 0.1. We investigate the following strategy.

1. Strategy 1: The Effect of Bed-Net Use Intervention only.
In this part, we investigate the effects of the bed-net use intervention only. For the
numerical simulations, we set u1 ≥ 0 and u2 = 0. Figure 3 shows that strategy
1 can reduce filariasis cases. Without a control strategy, the peak of the number of
infected humans almost reaches 25. Without control, the number of infected humans
at the end of the period is 6. When strategy 1 is implemented, the number of infected
humans at the end of the period decreases to near 0. Moreover, when strategy 1 is
applied, the peak of the number of infected humans is about 15 only. Figure 3 shows
that the optimal value of u1 should be always at its upper bound.

Figure 3. Dynamics of infected human and control profile when strategy 1 is
applied

2. Strategy 2: The Effect of Insecticide Intervention only.
Now, we explore the effect of insecticide intervention only. We conduct the numerical
simulations with u1 = 0 and u2 ≥ 0. Figure 4 shows that filariasis cases can be
controlled when strategy 2 is implemented. If strategy 2 is implemented, the number
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of infected humans at the end of the period is 2. Figure 4 shows that control u2 should
be always at its upper bound.

Figure 4. Dynamics of infected human and control profile when strategy 2 is
applied

3. Strategy 3: The Effect of Bed-Net Use and Insecticide Intervention.
The effect of the combination of bed-net and insecticide intervention is studied in
this subsection. We set both u1 ≥ 0 and u2 ≥ 0. Figure 5 shows that strategy 3
can reduce the number of infected humans. When strategy 3 is applied, the number
of infected humans at the end of the period decreases near 0. Figure 5 shows that
control u1should be at its upper bound throught 700 days. On the other hand, control
u2should be at its upper bound at day 50th.

Figure 5. Dynamics of infected human and control profile when strategy 3 is
applied

We will find it difficult to determine the most effective strategy in controlling filariasis
cases if we only compare the figures and the number of infected humans at the end
of the period of each strategy. Here we determine the effectiveness of each strategy
using (9). The results obtained are listed in Table 2.

Table 2. Effectiveness of each strategy

Strategy Effectiveness Ē
1 0.67159
2 0.46206
3 0.66878

JJoM | Jambura J. Math. 73 Volume 4 | Issue 1 | January 2022



Sensitivity, Optimal Control, and Cost-Effectiveness Analysis of Intervention Strategies. . .

It is clear that the most effective strategy is strategy 1. Now we investigate the most
cost-effective strategy using ACER and IAR. We use formula (10) to determine the
ACER and IAR of the strategies. The results are given in Table 3. From the ACER

Table 3. Cost-effectiveness of each strategy

Strategy Tav TC Recovered Human ACER IAR
1 6829.6166 446.7419 116.0824 0.065412 58.8342
2 4698.7897 20.9367 123.9002 0.0044558 37.924
3 6800.998 455.9003 116.2083 0.067034 58.5242

values presented in Table 3, strategy 2 is the most cost-effective. It is followed by
strategy 1. The least cost-effective strategy is strategy 3. Therefore, the average cost
for each infected human prevented when strategy 2 is employed is lower than when
strategy 1 or strategy 3 is implemented. Based on the IAR values listed in Table 3,
the most cost-effective strategy is strategy 1, followed by strategy 3, then strategy 2.
Hence, the positive impact of curing one infected human on the number of infected
humans prevented when strategy 1 is practiced is higher than when strategy 2 or
strategy 3 is implemented.

4. Conclusion

In this work, we discuss sensitivity, optimal control, and cost-effectiveness analysis of
intervention strategies of filariasis. We solve the optimal control problem using
Pontryagin’s maximum principle. Our findings suggest that the most effective strategy
is bed-net use intervention. Using ACER approach, we find that the most cost-effective
strategy is insecticide intervention. On the other hand, based on the IAR approach, the
most cost-effective strategy is bed-net use intervention. Also, the sensitivity analysis
results supports that bed-net use and treatment has a central role in reducing the
reproduction number and filariasis spread.
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